Fleet Monitoring System

Desicn DoOCUMENT

sdmay18-19
Lotfi Ben-Othmane
Venecia Alvarez - Point of Contact
Kendall Berner - Project Manager
Matthew Fuhrmann - Report Manager
William Fuhrmann - Test Engineer
Anthony Guss - Technical Lead
Tyler Hartsock - Web Manager
sdmay18-18@iastate.edu
https://sdmay18-18.sd.ece.iastate.edu

Revised: 10-9-2017/1.0



Table of Contents
1 Introduction
1.1 Project statement
1.2 Purpose
1.3 Goals
2 Deliverables
3 Design
3.1 System specifications
3.1.1 Non-functional
3.1.2 Functional
3.1.3 Standards
3.2 PROPOSED DESIGN/METHOD
3.3 DESIGN ANALYSIS
4 Testing/Development
4.1 INTERFACE specifications
4.2 Hardware/software
4.2 Process
5 Results
6 Conclusions
7 References

8 Appendices

A O A A A A WW W W W W W

~

PaGe 1



1 Introduction

1.1 PROJECT STATEMENT

Our project is to make a fleet monitoring system. We have been provided an Android embedded
device that can interface with a vehicle’s CAN BUS network. We will develop an Android
application for the Android embedded device that queries the vehicle’s components and relays the
collected data to a server. This server will process and store the data. The server will also provide a
website with real-time and historical data on location of all vehicles and internal data from the
vehicles such as gas consumption and vehicle diagnostics. The website will also show useful
interpretations and statistics of the data, and will allow website users to message the Android
devices that are in the vehicles.

1.2 PURPOSE

The purpose of this project is to give fleet managers a better way of tracking information on the
vehicles in their fleet. Fleet managers often find it difficult to know the current location of their
vehicles or where their vehicles have been, and knowing this information helps them ensure that
their vehicles are being used correctly and efficiently. Fleet managers also need better ways of
predicting maintenance needs and vehicle operation costs. Data on fuel consumption and vehicle
diagnostics can help fleet managers predict the needs of their vehicles. Having statistics on fleet
operation will help fleet managers who are trying to improve the efficiency of their fleet.

1.3 GoALs

We want to create a system that efficiently gathers and transmits information from vehicles,
processes and stores that data, and displays it in a meaningful way for fleet managers. Our project
has several different components involved. Our main goal is to have all those components working
and integrated with each other before we get to our final deadline. In regards to soft skills, our
team has set a goal to learn more about project management and agile development. Through this
project experience, we will see what the entire software development process and life cycle really
look like.

2 Deliverables

The webpage will be made for use by the manager of the fleet. It will have a simple and intuitive
design made for ease of use. This web page will display a live map tracking the locations of all
vehicles in the fleet in real time. A single vehicle can be selected, which will bring up a profile that
will display information about that vehicle such as remaining gas, miles driven, driver, etc. The
webpage will also have a page that details the stats of the fleet as a whole, so that the manager can
see how much gas the entire fleet uses over a month, for instance. Graphs will be provided to make
the statistics and information easier to parse.

Our server will be created using Node.js. The server will handle incoming raw data from the
embedded devices and process this information into usable information that it will then put into a
database. The server will also handle data request from the web page. Both the incoming and

Pace 2



outgoing data will be transmitted through REST API calls. This will allow us to use a single protocol
across our entire system. The Node.js server will be hosted on the Google cloud platform, allowing
us to scale our resources to the demands of our services.

The Android microcontroller will run an Android app that is used in the vehicles. It will connect to
the vehicle’s CAN BUS network and query for useful information. It will also acquire GPS data from
a separate GPS hardware device. The microcontroller will store the data locally so that it can
guarantee that it gets sent to the server. The microcontroller will be able to send data that it
collects to the server, and will be able to receive messages from the server and display them on a
screen connected to the microcontroller.

Pace 3



3 Design
3.1 SYSTEM SPECIFICATIONS
Our back-end is required to be written in Node.js.

3.1.1 Non-functional
The product shall:
e Be used by vehicles at any time and location
Utilize Google Cloud services
Send messages from the manager to the driver(s) in a timely manner
Only allow managers to view fleet data on the dashboard
Have the server side code made in Node.js
Use Angular]S on the client side

3.1.2 Functional

The product shall:

Gather data from a vehicle

Transmit data from the vehicle to the server

Process raw data from the vehicle on the server

Record vehicle data into a database

Display a map with a location of all vehicles in the fleet

Display historical data for a certain vehicle (location, gas usage)
Allow managers to register vehicles that belong to a particular fleet

Display vehicle information only to users who have that vehicle registered to their fleet

3.1.3 Standards

We will use the agile development method. Our coding standards will align with the basic coding
standards for each programming language used. We will also use vulnerability testing to ensure
that the data can only be accessed by processes or processors with permission. This ensures that
we will not be doing anything unethical. Coding standards are important for our project, because
the client intends to modify our software in the future to fulfill the needs of future clients.
Following coding standards for the programming languages we use will make fixing and modifying
the software set much quicker, easier, and cheaper.

3.2 PROPOSED DESIGN/METHOD

Our team will develop three different components that will provide the manager with the
information that they need on their fleet: an on-board Android microcontroller that will query the
CAN BUS network of the vehicle and forward the data it collects to a server, a server used to handle
incoming data from the Android device and send necessary data to the website, and a website that
will be the interface that shows important information to a manager about their fleet. The server is
required to be in Node.js, and will provide APIs for putting data into the database for vehicles and
APIs for the front-end to get the information that they need. The front-end will be an Angular]S

Pace 4



website that presents location data on a map and vehicle and fleet statistics using charts and
graphs.

The on-board Android device may require a USB GPS receiver in order to send location data to the
server. Android location services often use triangulation through Wi-Fi connections to get location
data, and if this is precise and reliable enough we will not need the USB GPS receiver. The on-board
Android device does have the capability to use Wi-Fi that can be provided by a mobile phone’s
Wi-Fi hotspot feature. The majority of work for the on-board device will be creating an interface for
the CAN BUS network. Because we are only trying to query data, we will mainly work on creating a
background process that uses OBD-II PIDs to query data from the network and periodically sends
that data to the server.

The server will be designed to be extremely modular. This will be done by separating our
implementation of the API into a model, a controller and a route to the API. This will allow each
implementation of the API to easily be modified, and will make it easy to add new API calls to the
server. We have created an example API that can be used as an example of how to implement a new
API call. The server will handle incoming data from the Android device through POST and PUT
API calls. The server will send data to the web front end through GET and DELETE API calls.

3.3 DESIGN ANALYSIS

We originally planned to use Angular]S on our front-end. This has proven to be a slight challenge,
and our team is considering if it is necessary to use this framework at all anymore. We plan on
continuing to experiment with Angular]S and trying to integrate it with our existing prototypes for
the map and charts for at least another week. Our plan is to pivot towards a different framework if
Angular]JS seems to be more trouble than it’s worth moving forward.

The work for the Android on-board device so far has mostly entailed understanding the hardware
and finding out what other hardware we need. We have prototyped all of the functionality not
related to the CAN BUS network querying and our ideas seem to work. We do not have the cables
and hardware yet to fully test the CAN BUS interfacing hardware, and we are working with our
client and the vendor of our microcontroller to get the proper materials needed to begin working
on our project. The library that the board works with for CAN BUS interfacing was only provided as
a .so file, so we are not entirely sure of what functions it provides us. We do have an example of
using the library in Android using ‘native’ API calls, and those calls seem to be very low-level, so we
will likely spend a large amount of time developing the CAN BUS interfacing code from the ground
up. We are trying to get the source code of the library, both so that we can understand how the
library works, and so that we can eventually have a product that works with more types of
processors, as the compiled library will only work with ARM processors.

We originally intended to implement our server using a micro-service architecture using Java and
Spring. However, our client made it a requirement that our server be written in Node.js. Because of
this, we lost a week of time researching and prototyping the old server. After transitioning into a
Node.js server, we were able to prototype our API that will be used by the Android device and the
Website. Currently, the API is using a basic model for the data. This model will be changed and
improved as we make more progress with the Android device.

Pace 5



Pace 6



4 Testing/Development

4.1 INTERFACE SPECIFICATIONS

We are using an Android microcontroller to query data off of the CAN-BUS network of a vehicle.
We will develop an Android app that will query the CAN-BUS network for useful information and
send that data along with location data from the Android device to our google cloud server.

4.2 HARDWARE/SOFTWARE

We will use JUnit to unit test for the Android application. We will also use a CAN-BUS OBD-II
simulator that allows the application to query for dummy data and ensure that all the parts are
functioning as intended.

In order to test our server, we will be using Postman to verify our API and perform regression
testing. Postman allows us to setup automated tests that will run whenever we update the API for
the server.

4.2 PROCESS
The server was tested using Postman. This allowed us to validate that the API calls were working
correctly. We used Postman to setup automatic tests to ensure that the API calls remain correct.

This is done by calling a specific API call and validating the response from the server. These tests
will grow more complex as our models and data grow as we implement new features.

Pace 7



5 Results

On the front end, we have successfully created several prototypes of what we like our final
dashboard for fleet managers to look like. It will use the Google Maps API to display a map with the
location of all of the vehicles in the fleet. It will also use Chart.js to make multiple different types of
charts that will display vehicle/fleet statistics. So far, prototypes of maps and charts have been
made that can be modified going forward to meet the specific requirements of our front-end and to
use real data from vehicles. One challenge we recently faced was setting up our environment to run
our server in order to hit our API endpoints on the front-end. Through collaboration and research,
we were finally able to get our application up and running. Another challenge we are facing on the
front-end is using Angular]S to its full capabilities. To progress in this area, we plan on doing a lot
more research and practicing Angular]S with examples we find online.

On the Android microcontroller, we have so far been unable to query the CAN BUS network. We
have figured out that the reason the connection wasn’t working is because we have been using the
wrong connector. Our client has ordered the correct connector and we should be able to query the
CAN BUS from the microcontroller soon. As far as Android programming, we have created a
prototype application that gets latitude and longitude and a prototype application that builds a
JSON object from dummy data and sends it to the server via POST API. This should give us a good
foundation for when we get the CAN BUS data query working. To complete this part of the project,
we need to get the microcontroller to get data from the CAN BUS network, combine the prototype
applications, and make design decisions as to what types of data the fleet manager will want to see
from the vehicle.

On the server, we have successfully prototyped some basic API calls. The first API call allows the
Android device to send data containing the date and time, longitude and latitude, and speed. The
Android device also sends a unique identification number (UID) with this data which is used to
assign the data to a specific vehicle. Using a GET API call, the website can access this data based
upon the UID. In order for the data to make sense for a specific manager, we created a manager
model. This model contains a login system for managers to login, and shows which vehicles the
manager owns. This will allow the website to pull the specific vehicle data for a manager from the
server. We have also implemented the ability to delete vehicles, both from the data set and from a
manager. This allows old data to be removed if, for example a vehicle has been sold or is no longer
in use. The data used for the vehicles is currently minimal containing only location, speed and date.
This will expand as we add new features. For example, a feature we want to add is fuel
management. To do this, we will have to have data regarding the current levels of fuel. Once we
have this data, the server will accept this data and make it available to the website. The website will
in turn use this data to provide the manager information about fuel usage.

6 Conclusions

Pace 8



The goals for our team are to create a viable fleet monitoring system that provides managers with
relevant information on the vehicles in their fleets by collecting data from the vehicles, and to gain
more experience with the development process.

We have successfully created prototypes for the map and various charts that we would like to have
on our fleet manager dashboard. At this point, the client can make calls to the server API to grab
data and display that data on the front-end.

We have created a prototype Android application that can use dummy data and send it to the
server in JSON format. This application holds a data class that will be used for data storage on the
Android device before it is sent to the server. Our application allows the driver to start a trip, input
their employee id, and put logistical data to the server. We also has a prototype application that
prints the current location of the device. From here we will need to combine the two prototype
applications and get the microcontroller to be able to query the CAN BUS network.

We have successfully created a prototype for our server. This includes basic API calls that allow
incoming data from the Android device, and outgoing data to the website. We have created a good
base for our server, and it will be easy to add new data as well as new API calls to implement new
features going forward.

Our plan is to work primarily on getting the connection to CAN BUS network working so that we
can begin to collect real data from cars and pass that to our server. While this is going on, some
work will be spend on preparing the server and front-end to handle the data when we begin
collecting it, all though much of the prototypes necessary for this have already been completed.
This is the best possible plan because it helps us create the framework to provide managers
information while focusing on the aspects that will be the most difficult and are causing us the
most uncertainty for estimation. Once we finish the data estimation, we should be able to focus on
adding features and improving the product.

7 References

List any references used in the document. These are an essential part of your review so far.

Pace 9



8 Appendices

If you have any large graphs, tables, or similar that does not directly pertain to the problem but
helps support it, include that here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc. PCB testing issues etc.
Software bugs etc.

Pace 10



